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Recap: Markov Decision Process
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Markov property: Current state completely characterizes the state of the world.

State = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

Action = {up, down, left, right}

Reward = -1 for all transitions



Recap: Value-Based Approach
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Policy: ways of acting. It is a mapping from states to probabilities of selecting each 
possible action.

Value Function: the expected return when starting in s and following 𝜋 thereafter.

Relationship:

Objective: find the optimal policy, which maximizes cumulative discounted reward 
(value function).

Q-Learning: a temporal-difference learning method.

What if there are large number of states, or even infinitely many states? DQN



Policy-Based Methods
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RL Goal: Learning a policy to maximize the expectation of the accumulate returns (rewards) 
when an agent interacts with the environment.

Value-Based Methods: learning action-value firstly, then select actions based on the 
learned action-value (policy).

Policy-Based Methods: compute the gradient of J(θ) w.r.t. θ directly, then update the 
parameter θ of the policy according to the gradient.



Question: How to compute                                                       ? 

Compute the Gradient
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Monte-Carlo Sampling:



Algorithm: REINFORCE
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We need to design 
some proper reward 
functions.

We need to choose some 
proper policies with parameter 
θ, or use a neural network to 
approximate this mapping.



Example: Gaussian Policies (Continuous Case)
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Summary: RL Algorithms (So Far)
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Reinforcement Learning Algorithms

Model-Based MethodsModel-Free Methods

??
Value-Based Approach Policy-Based Approach

Q-Learning
SARSA
DQN
DDQN
……

REINFORCE [2]
TRPO [3]
PPO [4]
……



Case Study: Application on Robot Locomotion
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4(26): eaau5872.
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Case Study: Application on Robot Locomotion
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Base Velocity Tracking Performance of the Learned Controller While Following Random Commands

(A) Forward velocity, (B) Lateral velocity, (C) yaw rate. For all graphs, the dotted lines represent the commanded velocity and the solid lines 
represent the measured velocity. All commands are followed with a reasonable accuracy even when the commands are given in a random fashion.
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Thanks for Listening
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